МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Выксунский физикар федерального образовательного

чреждения высинего образования "Национальный исследовательский технологический

ФИО: Кудашов Дмитрий Викторович

Должность: Директор Выксунского филиала НИТУ "МИСиС"

Дата подписания: 15.12.2022 14:48:10

Рабонан апрынанімя пускавждонный КЛЮЧ:

решением Учёного еовета В В ничту Гумисису аессса9c00adba42f2def217068

от «26» мая 2022г. протокол №7-22

Рабочая программа дисциплины (модуля)

Компьютерная графика

 Закреплена за кафедрой
 Естественно-научных дисциплин

 Направление подготовки
 22.03.02 Металлургия

 Профиль
 Металлургия черных металлов

Квалификация **бакалавр** Форма обучения **очная** Общая трудоемкость **5 3ET**

Часов по учебному плану 180 Формы контроля в семестрах:

в том числе: зачет 1зачет с оценкой 2 аудиторные занятия 72

самостоятельная работа 100

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	1 (1.1)		2 (1.2)		Итого	
Недель	1	9	1	9		
Вид занятий	УП	РΠ	УП	РΠ	УП	РΠ
Лекции	18	18	18	18	36	36
Практические	18	18	18	18	36	36
КСР	4	4	4	4	8	8
Итого ауд.	36	36	36	36	72	72
Контактная работа	40	40	40	40	80	80
Сам. работа	68	68	32	32	100	100
Итого	108	108	72	72	180	180

Программу составил(и):

Ст. препод., Волкова Е.А.

Рабочая программа

Компьютерная графика

Разработана в соответствии с ОС ВО:

Самостоятельно устанавливаемый образовательный стандарт высшего образования - бакалавриат Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСиС» по направлению подготовки 22.03.02 Металлургия (приказ от 02.04.2021 г. № 119 о.в.)

Составлена на основании учебного плана:

22.03.02 Металлургия, ЭМ-22.рІх Металлургия черных металлов, утвержденного Ученым советом ВФ НИТУ "МИСиС" 25.02.2022, протокол № 5-22

Рабочая программа одобрена на заседании кафедры **Естественно-научных дисциплин** Протокол от 19.05.2022 г., №9 Зав. кафелрой Мокрецова Л.О. 1 HE III OCDODING

	1. цели освоения				
1.1	1.1 научить современным методам построения машиностроительных чертежей с применением систем				
	автоматизированного проектирования и принципам трехмерного твердотельного моделирования				
2. МЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ					
П	Цикл (раздел) ОП: Б1.О				
2.1	2.1 Требования к предварительной подготовке обучающегося:				

- 2.1.1 Информатика
- 2.1.2 Начертательная геометрия и инженерная графика
- 2.2. Лисинплины (молули) и практики, для которых освоение ланной лисинплины (молуля) необходимо как предшествующее:
- 2.2.1 Детали машин

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ЛИСПИПЛИНЕ. СООТНЕСЕННЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

ОПК-2: Способен участвовать в проектировании и разработке технических объектов, систем и технологических процессов с учетом экономических, экологических и социальных ограничений

ОПК-2.3: Применяет современные метолы проектирования при разработке технических объектов для решения задач профессиональной леятельности

Direct .

ОПК-2.3-33 методы и принципы построения трехмерных моделей

ОПК-2.3-34 методы построения чертежей, деталей, сборочных единиц с применением систем автоматизированного проектирования

ОПК-2.3-31 элементы начертательной геометрии и компьютерной графики, программные средства компьютерной графики

ОПК-2.3-32 основные виды графических примитивов в системах автоматизированного проектирования

VMetl.

ОПК-2.3-УЗ самостоятельно выбирать подходящие способы обрисовки различных деталей

ОПК-2.3-У4 выбирать способы полготовки информации в улобной для восприятия форме

ОПК-2.3-У1 применять системы автоматизированного проектирования для создания двухмерных чертежей

ОПК-2.3-У2 осуществлять трехмерное моделирование деталей

Влалеть:

ОПК-2.3-ВЗ способами выполнения и оформления чертежей

ОПК-2.3-В2 навыками выполнения сборочной единицы по рабочему чертежу и спецификации

ОПК-2.3-В1 навыками самостоятельной работы с литературой для поиска информации об отдельных понятиях, терминах, объяснения их решения в практических ситуациях 4. СТРУКТУРА И СОЛЕРЖАНИЕ

Код Наименование разделов и тем /вид занятия/ Семестр / Часов Компетен-Литература Примечание занятия Kypc пии и эл. ресурсы Раздел 1. Теоретические основы компьютерного моделирования 1.1 История развития компьютерной графики и 2 ОПК-2.3 Л1 1 Л1 2 области ее использования. Основные категории 91 92 93 графических систем. Классификация систем автоматизированного проектирования (САПР) 2 ОПК-2.3 П1 2 1.2 Интерфейс систем автоматизированного 1 91 92 93 проектирования /Пр/ Самостоятельное проработка материала по 14 ОПК-2.3 Л1.2 1.3 1 91 92 93 разделу /Ср/ Раздел 2. Основы графических построений в Компас

VII: 9M-22.plx cm.

2.1	Примитивы как элементы чертежа. Простановка и настройка размеров /Лек/	1	4	ОПК-2.3	Л1.2 Э1 Э2 Э3	
2.2	Выполнение простейших геометрических построений, использование привязок, простановка размеров /Пр/	1	4	ОПК-2.3	Л1.2 Э1 Э2 Э3	
2.3	Редактирование графических примитивов. Выбор объектов редактирования /Лек/	1	2	ОПК-2.3	Л1.2 Э1 Э2 Э3	
2.4	Редактирование графических элементов /Пр/	1	2	ОПК-2.3	Л1.2 Э1 Э2 Э3	
2.5	Методика создания двухмерного чертежа. Размер и место расположение видимой части чертежа, панорамирование. Работа со слоями чертежа /Лек/	1	4	ОПК-2.3	Л1.2 Э1 Э2 Э3	
2.6	Создание двухмерного чертежа по индивидуальному заданию /Пр/	1	4	ОПК-2.3	Л1.2 Э2 Э3	
2.7	Самостоятельное проработка материала по разделу /Ср/	1	24	ОПК-2.3	Л1.2 Э1 Э2 Э3	
	Раздел 3. Трехмерное моделирование в Компас					
3.1	Пространства модели, дерево построение. Типовые объемные тела: призма, цилиндр, конус, сфера и др. /Лек/	1	2	ОПК-2.3	Л1.2 Э1 Э2 Э3	
3.2	Создание трехмерной модели с использованием базовых тел /Пр/	1	2	ОПК-2.3	Л1.2 Э1 Э2 Э3	
3.3	Построение тел выдавливанием, вращением, по сечениям и по траектории. Разрезы, сечения. Редактирование тел: поворот, зеркало, массив /Лек/	1	4	ОПК-2.3	Л1.2 Э1 Э2 Э3	
3.4	Создание трехмерной модели по индивидуальному заданию /Пр/	1	4	ОПК-2.3	Л1.2 Э1 Э2 Э3	
3.5	Самостоятельное проработка материала по разделу /Ср/	1	30	ОПК-2.3	Л1.2 Э1 Э2 Э3	
	Раздел 4. Создание сборки в Компас					
4.1	Создание файла сборки. Добавление компонентов. Создание сборочной единицы. Наложение сопряжений. Виды сопряжений /Лек/	2	6	ОПК-2.3	Л1.2 Э1 Э2 Э3	
4.2	Создание трехмерной сборки, применение библиотек /Пр/	2	6	ОПК-2.3	Л1.2 Э1 Э2 Э3	
4.3	Проецирование объектов /Пр/	2	2	ОПК-2.3	Л1.2 Э1 Э2 Э3	
4.4	Самостоятельное проработка материала по разделу /Cp/	2	10	ОПК-2.3	Л1.2 Э1 Э2 Э3	
	Раздел 5. Создание комплекта конструкторской документации в Компас					
5.1	Создание комплекта конструкторской документации. Создание сборочного чертежа и спецификации /Лек/	2	4	ОПК-2.3	Л1.1 Л1.2 Э1 Э2 Э3	
5.2	Создание комплекта конструкторской документации в программе КОМПАС-3D /Пр/	2	4	ОПК-2.3	Л1.1 Л1.2 Э1 Э2 Э3	
5.3	Самостоятельное проработка материала по разделу /Cp/	2	12	ОПК-2.3	Л1.1 Л1.2 Э1 Э2 Э3	
	Раздел 6. Основы графических построений в AutoCAD					
6.1	Примитивы как элементы чертежа. Общие свойства примитивов: текущий цвет, текущий тип линий, текущий слой, текущая система координат. Простановка и настройка размеров /Лек/	2	4	ОПК-2.3	Л1.2 Э2 Э3	

VII: 3M-22.plx cm, 5

6.2	Выполнение простейших геометрических построений, использование привязок, простановка размеров в программе AutoCAD /Пр/	2	4	ОПК-2.3	Л1.2 Э2 Э3	
6.3	Редактирование графических примитивов. Выбор объектов редактирования /Лек/	2	4	ОПК-2.3	Л1.2 Э2 Э3	
6.4	Редактирование графических элементов в программе AutoCAD /Пр/	2	2	ОПК-2.3	Л1.2 Э2 Э3	
6.5	Самостоятельное проработка материала по разделу /Ср/	2	10	ОПК-2.3	Л1.2 Э2 Э3	

5. ФОНЛ ОПЕНОЧНЫХ МАТЕРИАЛОВ (Приложение)

6. УЧЕБНО-МЕТОЛИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

6.1. Рекомендуемая литература

6.1.1. Основная литература

	Авторы, составители	Заглавие	Библиотека	Издательство, год
Л1.1	Дегтярев В.М., Затыльникова В.П.	Инженерная и компьютерная графика: учебник	Электронный каталог	Москва Академия, 2012
Л1.2	Большаков В.П., Бочков А.П.	Основы 3 D-моделирования. Изучаем работу в AutoCAD,KOMПAC- 3,SolidWorks Inventor: учебник	Электронный каталог	СПб Питер, 2013

6.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

Э1	Научная электронная библиотека https://elibrary.ru	https://elibrary.ru
Э2	Электронная библиотека МИСиС http://lib.misis.ru	http://lib.misis.ru
	ЭБС Университетская библиотека онлайн http://biblioclub.ru	http://biblioclub.ru

6.3 Перечень программного обеспечения

П.1	AutoCAD
П.2	Компас 3Д

- Π.3 Microsoft Office
- П.4 Microsoft Teams
- П.5 Canvas

6.4. Перечень информационных справочных систем и профессиональных баз данных

- И.1 Научная электронная библиотека https://elibrary.ru
- И.2 Электронная библиотека МИСиС http://lib.misis.ru
- И.3 ЭБС Университетская библиотека онлайн http://biblioclub.ru
- И.4 Российская платформа открытого образования http://openedu.ru

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Ауд.	Назначение	Оснащение
6	Компьютерная графика	Компьютеры, доступ к интернету
5	Компьютерная графика	Комплект учебной мебели на 16 посадочных мест с компьютерами, проектор, экран, интерактивная доска
5	Компьютерная графика	Комплект учебной мебели на 16 посадочных мест с компьютерами, проектор, экран, интерактивная доска

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ

Изучение дисциплины базируется на использовании лабораторных и практических работ и выполнении домашних заданий. Лекции по курсу проводятся в компьютерном классе с использованием мультимедийной техники и объединяются по времени с проведением лабораторных работ. На практических занятиях и при выполнении домашних занятий осваиваются классические методы создания чертежей и трехмерного моделирования в системах автоматизированного проектирования (CATIP).

Для успешного освоения дисциплины "Компьютерная графика" обучающемуся необходимо:

- 1. Посещать все виды занятий.
- 2. Своевременно зарегистрироваться на рекомендованные электронные ресурсы LMS Canvas и MS Teams.
- 3. При возникновении любых вопросов по содержанию курса и организации работы своевременно обращаться к

преподавателю.

преподавателю.
4. Своевременно выполнить домашние задания.
Качественное освоение дисциплины возможно только при систематической самостоятельной работе, что поддерживается системой текущей аттестации на LMS Canvas.